Incremental Mining of Closed Sequential Patterns in Multiple Data Streams
نویسندگان
چکیده
Sequential pattern mining searches for the relative sequence of events, allowing users to make predictions on discovered sequential patterns. Due to drastically advanced information technology over recent years, data have rapidly changed, growth in data amount has exploded and real-time demand is increasing, leading to the data stream environment. Data in this environment cannot be fully stored and ineptitude in traditional mining techniques has led to the emergence of data stream mining technology. Multiple data streams are a branch of the data stream environment. The MILE algorithm cannot preserve previously mined sequential patterns when new data are entered because of the concept of one-time fashion mining. To address this problem, we propose the ICspan algorithm to continue mining sequential patterns through an incremental approach and to acquire a more accurate mining result. In addition, due to the algorithm constraint in closed sequential patterns mining, the generation and records for sequential patterns will be reduced, leading to a decrease of memory usage and to an effective increase of execution efficiency.
منابع مشابه
Incremental Mining of Across-streams Sequential Patterns in Multiple Data Streams
Sequential pattern mining is the mining of data sequences for frequent sequential patterns with time sequence, which has a wide application. Data streams are streams of data that arrive at high speed. Due to the limitation of memory capacity and the need of real-time mining, the results of mining need to be updated in real time. Multiple data streams are the simultaneous arrival of a plurality ...
متن کاملStatistical supports for mining sequential patterns and improving the incremental update process on data streams
Recently the knowledge extraction community takes a closer look to new models where data arrive in timely manner like a fast and continous flow, i.e. data streams. As only a part of the stream can be stored, mining data streams for sequential patterns and updating previously found frequent patterns need to cope with uncertainty. In this paper, we introduce a new statistical approach which biais...
متن کاملA Single-scan Algorithm for Mining Sequential Patterns from Data Streams
Sequential pattern mining (SPAM) is one of the most interesting research issues of data mining. In this paper, a new research problem of mining data streams for sequential patterns is defined. A data stream is an unbound sequence of data elements arriving at a rapid rate. Based on the characteristics of data streams, the problem complexity of mining data streams for sequential patterns is more ...
متن کاملCISpan: Comprehensive Incremental Mining Algorithms of Closed Sequential Patterns for Multi-Versional Software Mining
Recently, frequent sequential pattern mining algorithms have been widely used in software engineering field to mine various source code or specification patterns. In practice, software evolves from one version to another in its life span. The effort of mining frequent sequential patterns across multiple versions of a software can be substantially reduced by efficient incremental mining. This pr...
متن کاملSPAMS: A Novel Incremental Approach for Sequential Pattern Mining in Data Streams
Mining sequential patterns in data streams is a new challenging problem for the datamining community since data arrives sequentially in the form of continuous rapid and infinite streams. In this paper, we propose a new on-line algorithm, SPAMS, to deal with the sequential patterns mining problem in data streams. This algorithm uses an automaton-based structure to maintain the set of frequent se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JNW
دوره 6 شماره
صفحات -
تاریخ انتشار 2011